
1

FAA National Software Conference, May 2002
Object-Oriented Structural Coverage Research

 John Chilenski

Object-Oriented
Structural Coverage

Research
John Joseph Chilenski

Associate Technical Fellow – Airborne Software Verification
Boeing Commercial Airplanes

May 15, 2002

Page 2 J.J.Chilenski 2002 FAA National Software Conference

Topics

• Purpose of Research

• Background

• Issues
• Inheritance
• Overriding
• Polymorphism / Dynamic Binding/Dispatch
• Data Coupling and Control Coupling

• Conclusion

2

FAA National Software Conference, May 2002
Object-Oriented Structural Coverage Research

 John Chilenski

Page 3 J.J.Chilenski 2002 FAA National Software Conference

Purpose of Research

• Identify Issues concerning the Structural Coverage of software
developed using Object-Oriented Technology
• Terms of Reference

– RTCA / DO-178B – Primary
– RTCA / DO-248B – Secondary

• Areas of Investigation
– Object Orientation in General
– Object-Oriented Programming Languages

– Ada95, C++, Java
– (current) Structural Coverage Analysis Tools for Object-

Oriented Languages

• Identify Options for resolving the Issues
• Complimentary to DO-178B / DO-248B

Page 4 J.J.Chilenski 2002 FAA National Software Conference

Background

• Structural Coverage is one of the checks for Adequacy of the
Requirements-Based Testing Process
• Do the Requirements-Based Tests properly verify the

Implementation?

Requirements-Based
 Verification (Test)

Requirements
Coverage?

Structural
Coverage?

No No

Yes Yes

3

FAA National Software Conference, May 2002
Object-Oriented Structural Coverage Research

 John Chilenski

Page 5 J.J.Chilenski 2002 FAA National Software Conference

Background (continued)

• Structural Coverage is one form of Traceability

System
Requirements

Source
Code

Tests

High-Level
Requirements

Low-Level
Requirements

&
Software

Architecture
Requirements

Coverage

Structural
Coverage

Object
Code

Page 6 J.J.Chilenski 2002 FAA National Software Conference

Inheritance

• One of the fundamental building blocks of OOT
• Mechanism whereby a Class is defined in terms

of other Classes
• Extension is the inclusion of the operations,

attributes and methods of ancestor classes
(parents, their parents, etc.) in a subclass

• Overriding is the definition of either an
attribute or method in a class with the same
signature as that in an ancestor class

• Specialization is the definition of
operations, attributes and methods that are
unique to that class

A_1
M_1()
M_2()

C_1

M_3()

C_2
A_2

C_3
A_3
M_2()
M_4()

4

FAA National Software Conference, May 2002
Object-Oriented Structural Coverage Research

 John Chilenski

Page 7 J.J.Chilenski 2002 FAA National Software Conference

Inheritance (continued)

• Issue: What is the proper testing of inherited
Attributes and Methods?

• Current consensus is to test the “Flattened”
Class
• All Attributes and Methods, whether defined

or inherited, are shown within the Class

• Structural Coverage should measure coverage
in the “flattened” Class (?)
• Some current Tools will measure coverage

only within the concrete Method
• Some current Tools will measure coverage

within the “flattened” Class

A_1
M_1()
M_2()

C_1

C_2 C_3
A_1
A_2

M_1()
M_2()
M_3()

A_1
A_3

M_1()
M_2()
M_4()

Page 8 J.J.Chilenski 2002 FAA National Software Conference

Overriding

• Overriding is one of the Inheritance
mechanisms

• Can impact Data Coupling and Control
Coupling
• Needs a change impact analysis to

assess:
– How much reverification is required
– What new verification is required

• Note: Testing and coverage of the
“flattened” Class will address the
differences

C_1
A_1
A_2

M_1() – A_1, M_2()
M_2() – A_2, M_3()
M_3() – A_1, A_2

C_2
A_1
A_2

M_1() – A_1, M_2()
M_2() – A_2, M_3()
M_3() – A_1, A_2

5

FAA National Software Conference, May 2002
Object-Oriented Structural Coverage Research

 John Chilenski

Page 9 J.J.Chilenski 2002 FAA National Software Conference

Overriding (continued)

• Equivalent to a non-object-oriented subprogram calling sequence
• M_1 calls M_2 calls M_3
• M_2 is changed
• Does M_3 need reverification?

– Depends on the Data Coupling and Control Coupling
• Does M_1 need reverification?

– Depends on the Data Coupling and Control Coupling

M_1()

M_2()

M_3()

M_1()

M_2’()

M_3()

Page 10 J.J.Chilenski 2002 FAA National Software Conference

Polymorphism / Dynamic Binding/Dispatch

• Polymorphism is the ability of a name in software text to denote,
at run-time, one or more possible entities
• The names of objects (in particular parameters), attributes and

methods may all be polymorphic

• Static binding/dispatch is the matching of accesses to attributes
and calls to methods at compile-time or link-time
• Static binding/dispatch is currently what is implemented in

traditional non-object-oriented languages
• The binding is based on the signature of the element to be

bound
• Since traditional programming languages only allow at most

one signature to be active in any particular scope, the
reference is unambiguous

6

FAA National Software Conference, May 2002
Object-Oriented Structural Coverage Research

 John Chilenski

Page 11 J.J.Chilenski 2002 FAA National Software Conference

Polymorphism / Dynamic Binding/Dispatch
(continued)

• Dynamic binding/dispatch is the matching of accesses to
attributes and calls to methods at run-time as opposed to compile-
time or link-time
• This results from a polymorphic reference or call

– Example already seen in Overriding
• In essence what is happening is that one of the key

components of the signature, namely the class the object
belongs to at the time of execution, is missing from the
signature
– Needs to be determined at run-time

• Note that it is possible to have both static and dynamic
binding/dispatch present in OOT software/systems

Page 12 J.J.Chilenski 2002 FAA National Software Conference

Polymorphism / Dynamic Binding/Dispatch
(continued)

• For static binding/dispatch, it is sufficient to
record coverage of the access and/or call
statement itself, as that access and/or call
never changes
• The call to Object_A.M_3() is

unambiguous
• There will appear a call to C_2.M_3 in the

object code

• For dynamic binding/dispatch, something
more may be needed
• The call to Object_B.M_2() is ambiguous
• It is not clear whether C_1.M_2() or

C_3.M_2() is to be called
– The appropriate method to call depends

on the type (class) of Object_B

A_1
C_1

C_2 C_3
A_1
A_2

M_1()
M_2()
M_3()

A_1
A_3

M_1()
M_2()
M_4()

Object_B.M_2()

M_1()
M_2()

7

FAA National Software Conference, May 2002
Object-Oriented Structural Coverage Research

 John Chilenski

Page 13 J.J.Chilenski 2002 FAA National Software Conference

Polymorphism / Dynamic Binding/Dispatch
(continued)

• In essence, the compiler/linker
generates a “case statement” to
determine the class of Object_B
and call the appropriate method
• Most implementations use

Method (dispatch) Tables
• Every Object points to its class

methods table
• Compiler generates lookup

code for the jump table
– Inlined dispatch routine

A_1
M_1()
M_2()

C_1

M_3()

C_2
A_2

C_3
A_3
M_2()
M_4()M_1()

M_2()
M_3()

Object_B

Page 14 J.J.Chilenski 2002 FAA National Software Conference

Polymorphism / Dynamic Binding/Dispatch
(continued)

• Issue: What is the proper testing of polymorphic references
(dynamic binding/dispatch)?
• No current consensus

• Issue: How should structural coverage of polymorphic references
(dynamic binding/dispatch) be recorded?
• No current consensus
• Some current Tools consider execution of the polymorphic

reference sufficient (Statement Coverage of Source)
• Some current Tools consider execution of every possible

resolution at every polymorphic reference sufficient (Decision
Coverage of Object)

• Some current Tools consider execution of every polymorphic
reference and every entry in every Method Table sufficient

8

FAA National Software Conference, May 2002
Object-Oriented Structural Coverage Research

 John Chilenski

Page 15 J.J.Chilenski 2002 FAA National Software Conference

Polymorphism / Dynamic Binding/Dispatch
(continued)

• At the very least, confirmation of Data Coupling and Control
Coupling is impacted by Dynamic Binding/Dispatch
• Equivalent to a non-object-oriented subprogram making

conditional calls based on the value of a parameter

M_X()

C_1.M_2() C_3.M_2()

Object_B

Page 16 J.J.Chilenski 2002 FAA National Software Conference

Data Coupling and Control Coupling

• Data Coupling and Control Coupling are not new to Object-
Oriented Technology

• Already identified some specific Issues regarding Data Coupling
and Control Coupling due to Inheritance, Polymorphism and
Dynamic Binding/Dispatch

• Object-Oriented Technology introduces some broader Issues

9

FAA National Software Conference, May 2002
Object-Oriented Structural Coverage Research

 John Chilenski

Page 17 J.J.Chilenski 2002 FAA National Software Conference

Data Coupling and Control Coupling
(continued)

• OOT encourages the development of many small, simple methods
to perform the services provided by a class
• Input to Output transforms distributed throughout the code

• OOT encourages hiding the details of the data representation (i.e.,
attributes) behind an abstract class interface
• Being able to access attributes only through methods makes

the interaction between two or more objects implicit in the code

• Most of the control flow is moved out of the source code through
the use of polymorphism and dynamic binding
• In essence, the control flow, and thereby the control coupling,

becomes implicit in the source code, as opposed to explicit
• There is a corresponding effect on data flow/coupling

Page 18 J.J.Chilenski 2002 FAA National Software Conference

Conclusion

• Object-Oriented Technology brings to the table Issues concerning
Structural Coverage
• Inheritance

– General “object-oriented community” Consensus is testing
of the “flattened” Class

– Could be extended to Structural Coverage
• Polymorphism / Dynamic Binding/Dispatch

– No Consensus
• Data Coupling and Control Coupling

– Appears to be at the heart of the Issues concerning
Structural Coverage of Object-Oriented Technology

– Can be complicated by Object-Oriented Technology

